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Caterpillars Have Antimagic Orientations

Antoni Lozano

Abstract

An antimagic labeling of a directed graph D with m arcs is a bijection
from the set of arcs of D to {1, . . . ,m} such that all oriented vertex sums
of vertices in D are pairwise distinct, where the oriented vertex sum of
a vertex u is the sum of labels of all arcs entering u minus the sum of
labels of all arcs leaving u. Hefetz, Mütze, and Schwartz [3] conjectured
that every connected graph admits an antimagic orientation, where an
antimagic orientation of a graph G is an orientation of G which has
an antimagic labeling. We use a constructive technique to prove that
caterpillars, a well-known subclass of trees, have antimagic orientations.

1 Introduction

All graphs considered in this paper are finite and simple unless otherwise
stated. A labeling of a graph G with m edges is defined as a bijection from
the set of edges of G to the set {1, . . . ,m}. A labeling of G is said to be
antimagic if all vertex sums are pairwise distinct, where the vertex sum of a
vertex u in G is the sum of labels of all edges incident with u. A graph is
said to be antimagic if it admits an antimagic labeling. Hartsfield and Ringel
conjectured in [4] that all simple connected graphs, with the exception of K2,
are antimagic. Although antimagicness has been proved for graphs belonging
to many classes, like regular graphs [1, 2] or trees having more than three
vertices and at most one vertex of degree two [10], the conjecture is still open
even for bipartite graphs. For related results the reader is referred to the
survey of Gallian [5].
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Hartsfield and Ringel’s conjecture finds a natural variation in the setting
of directed graphs. A labeling of a directed graph D with m arcs is a bijection
from the set of arcs of D to the set {1, . . . ,m}. A labeling of D is said to be
antimagic if all oriented vertex sums are pairwise distinct, where the oriented
vertex sum of a vertex u in D is the sum of labels of all arcs entering u minus
the sum of labels of all arcs leaving u. A graph is said to have an antimagic
orientation if it has an orientation which admits an antimagic labeling. Hefetz,
Mütze, and Schwartz [3] formulate the following conjecture:

Conjecture 1. Every connected graph admits an antimagic orientation.

In the same article [3], Hefetz et al. prove Conjecture 1 for stars, wheels,
cliques, and “dense” graphs (graphs of order n with minimum degree at least
C log n, for an absolute constant C); in fact, the authors prove the stronger
statement that every orientation is antimagic. Other classes for which Con-
jecture 1 is known to hold are odd regular graphs [3], even regular graphs [9],
or biregular bipartite graphs [11]. Actually, it is easy to see that all antimagic
bipartite graphs admit an antimagic orientation where all edges are oriented
in the same direction between the partite sets. For this reason, all subclasses
of trees that are known to be antimagic admit antimagic orientations. How-
ever, a particular subclass for which this reasoning cannot be applied is that
of caterpillars.

Definition 1. A caterpillar C is a tree of order at least 3 the removal of whose
leaves produces a path.

When some specific conditions on the number of leaves or on the vertex
degrees are added, caterpillars are known to be antimagic [8, 7] but, in the gen-
eral case, antimagicness is still open for caterpillars. Here we use the flexibility
given by the choice of an orientation to adapt the constructive technique from
Lozano, Mora, and Seara [8] and prove that all caterpillars admit an antimagic
orientation, supporting Conjecture 1.

2 Main Result

Let G be a graph and let u and v be vertices of G. Then, E(G) denotes the set
of edges of G and {u, v} represents an edge between u and v. An orientation

of G will be usually represented by ~G, the set of arcs of ~G by A(~G) and an arc

from u to v by uv. For any labeling φ of a graph G and any orientation ~G of
G, we use the notation φ(uv), for an arc uv ∈ A(~G), to mean φ({u, v}). This
way, φ is used to define both the vertex sum s(u) of u in G and the oriented
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vertex sum ~s(u) of u in ~G:

s(u) =
∑

{u,v}∈E(G)

φ({u, v}), and ~s(u) =
∑

vu∈A(~G)

φ(vu)−
∑

uv∈A(~G)

φ(uv).

For a vertex u in G and a subgraph H of G, sH(u) represents the vertex sum

of u in H. Similarly, for a vertex u in ~G and a subgraph ~H of ~G, ~s ~H(u)

denotes the oriented vertex sum of u in ~H. Given a caterpillar C, Theorem 1
constructs an orientation ~C of C and an antimagic labeling for ~C. In the proof,
antimagicness will be the consequence of obtaining different absolute values
for all oriented vertex sums. For convenience, then, we define the weight of a
vertex u in an oriented graph ~G as w(u) = |~s(u)|. For a subgraph ~H of ~G,

w ~H(u) = |~s ~H(u)| refers to the weight of u in ~H.
We also use the notation [a, b] = {a, a+ 1, . . . , b} for any two integers a, b

such that a ≤ b.

Theorem 1. Every caterpillar admits an antimagic orientation.

Proof. Let C be a caterpillar withm edges and r leaves, and consider a longest
path (u0, . . . , um−r+2) in C. Then, we define the path P = (u0, . . . , uk), where
k = m− r + 2 if m− r is even and k = m− r + 1 otherwise. The number of
edges of P is, therefore, even in any case. From here on we will refer to the
edges of P as path edges, and to the rest of edges in C as non-path edges.

We describe now an algorithm in seven steps to construct an orientation ~C
of C and a labeling φ : A(~C)→ [1,m] that will then be shown to be antimagic.

1. Defining the label set. Consider the division of the label set L = [1,m]
into the three subsets L1 = [1, k1], L2 = [k1+1, k2], and L3 = [k2+1,m],
where

k1 =
⌈m− r + 1

2

⌉
, and k2 =

⌈m+ r

2

⌉
− 1.

Labels in L1 and L3 will be used for the path edges, and labels in L2

for the non-path edges. The equality k1 + k2 = m (see Claim 1) will be
applied throughout the proof.

2. Labeling the path edges. We assign the labels in L1 and L3 to the path
edges in an alternating way. The largest label in L1, k1, is assigned to
the edge {u0, u1}, then the largest label in L3, m, is assigned to the next
edge, {u1, u2}, then the previous labels are assigned to the next edges
in P and so on, keeping the alternation of labels until the first ones are
reached. The sequence of labels assigned to the path edges is depicted
in Figure 1. Formally, for 1 ≤ i < k, the labeling is defined as:
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φ({ui, ui+1}) =

{
k1 − i

2 , if i is even

m− i−1
2 , otherwise

u0 u1 u2 u3 u4 uk−2 uk−1 uk

k1 m k1 − 1 m− 1 1 k2 + 1

Figure 1: Labeling of the path P .

3. Classifying the path vertices and the non-path edges. Let ui be a path
vertex with degree at least two in C. Then, we call ui light if sP (ui) < m
and ui is adjacent to exactly one vertex not belonging to P ; otherwise,
ui is called heavy. Note that the path vertices of degree one, in particular
u0, and also uk when m− r is even, have degree one in C and, then, are
neither light nor heavy.

A non-path edge is called light if it is incident with a light vertex, and
heavy if it is incident with a heavy vertex.

4. Orienting the path edges. The edge {u0, u1} is oriented as the arc u0u1.
The edge {ui, ui+1}, for 0 < i < k, is oriented in the “same direction” in
the path as the edge {ui−1, ui} if ui is light and in “contrary direction”
if ui is heavy, that is, as:

(a) uiui+1 if either ui−1ui ∈ A(~C) and ui is light or uiui−1 ∈ A(~C) and
ui is heavy,

(b) ui+1ui if either ui−1ui ∈ A(~C) and ui is heavy or uiui−1 ∈ A(~C)
and ui is light.

The oriented path P will be represented with ~P .

5. Orienting the non-path edges. Note that any non-path edge is incident
with a light or a heavy vertex. We consider two cases for a non-path
edge {ui, v} where ui is a path vertex and v is a leaf:

(a) if ui is light, we orient {ui, v} as uiv if ~s~P (ui) > 0, and as vui if
~s~P (ui) < 0,

(b) if ui is heavy, we orient {ui, v} as uiv if ~s~P (ui) < 0, and as vui if
~s~P (ui) > 0.

The goal of this orientation is that heavy edges help maximizing the
weight of the heavy vertices they are incident with, while light edges
help minimizing the weight of their respective light vertices.
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6. Labeling the light edges. Let ui1 , ui2 , . . . , uinl
be an ordering of the nl

light vertices such that w~P (ui1) ≤ w~P (ui2) ≤ · · · ≤ w~P (uinl
). Let lt

be the light edge incident with uit , for 1 ≤ t ≤ nl; then, we define
φ(lt) = k2 − t+ 1.

7. Labeling the heavy edges. For each heavy vertex uj with at least two
incident heavy edges, we randomly assign unused labels from L2 to all
heavy edges incident with uj except one. Now, all heavy vertices must
be incident with at most one heavy edge which has not yet been as-
signed a label. Let uj1 , uj2 , . . . , ujnh

be an ordering of the nh heavy ver-
tices having one incident still unlabeled heavy edge such that w′(uj1) ≤
w′(uj2) ≤ · · · ≤ w′(ujnh

), where w′(uj1), w′(uj2), . . . , w′(ujnh
) are the

partial weights calculated with the labels assigned so far. Let ht be the
still unlabeled heavy edge incident with jt, for 1 ≤ t ≤ nh; then, we
define φ(ht) as the t-th smallest unused label in L2.

Let ~C be the orientation of C defined above. Now, we establish some facts
before proving that φ is an antimagic labeling of ~C.

Claim 1. It holds that k1 + k2 = m.

Proof. We use well-known transformations of the ceiling and floor functions [6],
as indicated in the side annotations for a real x and an integer n:

m = m+ r − r

=
⌊m+ r

2

⌋
+
⌈m+ r

2

⌉
− r since n = bn/2c+ dn/2e

=
⌊m− r

2

⌋
+
⌈m+ r

2

⌉
since bxc+ n = bx+ nc

=
⌈m− r − 1

2

⌉
+
⌈m+ r

2

⌉
since

⌊n
2

⌋
=
⌈n− 1

2

⌉
=
⌈m− r + 1

2

⌉
+
⌈m+ r

2

⌉
− 1 since dxe+ n = dx+ ne

Claim 2. For any t such that 1 ≤ t ≤ nl, it holds that k2 ≤ w~P (uit) ≤ k2 + 1.

Proof. Let uit be a light vertex. If it = k = m − r + 1 (in the case m − r
is odd), then we know that uit is an endpoint of the path and is incident
with a light edge; therefore, w~P (uit) = k2 + 1 from step 2 in the algorithm.
Otherwise, since u0 is not a light vertex, suppose uit is not an endpoint of the
path. The orientation of the edges done in step 4 implies that the weight of
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uit in the path, w~P (uit), is the result of subtracting the labels of the edges
incident with uit (defined in step 2):

w~P (uit) = |φ({uit−1, uit})− φ({uit , uit+1})|.

If it is even, then

w~P (uit) =
∣∣∣(m− (it − 1)− 1

2

)
−
(
k1 −

it
2

)∣∣∣ = (m− it/2 + 1)− (k1 − it/2)

= m− k1 + 1 = k2 + 1,

where Claim 1 has been applied at the last equality. Similarly, if it is odd,
then

w~P (uit) =
∣∣∣(k1 − it − 1

2

)
−
(
m− it − 1

2

)∣∣∣ = |k1 −m| = | − k2| = k2.

Therefore, k2 ≤ w~P (uit) ≤ k2 + 1 for any light vertex uit .

Claim 3. It holds that nl ≤ k1 − 1.

Proof. For any light vertex ui it holds that sP (ui) < m. Since all possible
vertex sums in the path that are smaller than m are k2 + 1, k2 + 2, . . . , k2 +
k1 − 1 = m− 1, the maximum number of light vertices nl must necessarily be
at most k1 − 1.

Now we prove that φ is an antimagic labeling of ~C. We do this by classi-
fying the vertices into different classes depending on their degree and on the
fact of being light or heavy. Then, we show that the weights are pairwise dis-
tinct inside each class and that the sets of weights for the classes are pairwise
disjoint. As a conclusion, any oriented vertex sums at two different vertices
in ~C must be distinct because, otherwise, their absolute values (that is, their
weights) would coincide.

Light vertices

Note that, as a consequence of the orientation (step 5) and labeling (step
6) of the light edges, the weight of a light vertex uit , for 1 ≤ t ≤ nl, is
w(uit) = |w~P (uit)− (k2 − t+ 1)|.
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In the first place, we observe that the weights of any two light vertices uis
and uit , with 1 ≤ s < t ≤ nl, must be different:

w(uis) = |w~P (uis)− (k2 − s+ 1)|
= w~P (uis)− (k2 − s+ 1) since w~P (uis) ≥ k2 by Claim 2

≤ w~P (uit)− (k2 − s+ 1) since w~P (uis) ≤ w~P (uit) by assumption

= |w~P (uit)− (k2 − s+ 1)| since w~P (uit) ≥ k2 by Claim 2

< |w~P (uit)− (k2 − t+ 1)|
= w(uit).

In the second place, we show that the weights of light vertices are distinct
from the weights of the rest of vertices in C. The smallest weight of a light
vertex is that of ui1 , w(ui1) = |w~P (ui1)− k2|, which is 0 or 1 by Claim 2. As
for the largest weight of a light vertex, we have

w(uinl
) = |w~P (uinl

)− (k2 − nl + 1)|
≤ |(k2 + 1)− (k2 − nl + 1)| by Claim 2

≤ |(k2 + 1)− (k2 − (k1 − 1) + 1)| by Claim 3

= k1 − 1.

Therefore, the weights of light vertices are pairwise distinct and belong to the
set [0, k1 − 1].

Vertices of degree one

Vertices of degree one that belong to the path are at most two: u0, with weight
k1, and uk if m− r is even, in which case w(uk) = k2 + 1. Vertices of degree
one not belonging to the path, however, have a weight corresponding to the
value of a label in L2, hence belonging to the set [k1 + 1, k2]. Clearly, then,
all weights of vertices of degree one are pairwise distinct and belong to the set
[k1, k2 + 1], being larger than the weights of light vertices.

Heavy vertices with no incident heavy edge

Let uj be a heavy vertex with no incident heavy edge. Since heavy vertices
have degree at least two in C, uj must have two path vertices as neighbors
and, then, its incident path edges have been oriented in contrary directions in
step 4, that is, either as uj−1uj and uj+1uj or as ujuj−1 and ujuj+1. Then,
the labeling φ defined in step 2 (see also Figure 1) ensures that if uj and uj′ are
two heavy vertices with no incident heavy edge, for 0 < j < j′ < k, we have
w(uj) > w(uj′), being m+ k1 the largest weight and k2 + 2 the smallest one.
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Therefore, the weights of all heavy vertices with no incident heavy edge are
pairwise distinct and belong to [k2 + 2,m+ k1], being larger than the weights
of light vertices and of vertices of degree one.

Heavy vertices with incident heavy edges

The orientation of a heavy edge defined in step 5 ensures that any label
assigned to it contributes to an increase in the weight of the heavy ver-
tex it is incident with. Consider the list of nondecreasing partial weights
w′(uj1) ≤ w′(uj2) ≤ · · · ≤ w′(ujnh

) from step 7, and consider two partial
weights w′(ujs) and w′(ujt) from this list, with 1 ≤ s < t ≤ nh; remember
also that hs and ht are the unlabeled heavy edges incident with, respectively,
ujs and ujt . Then, we have that

w(ujs) = w′(ujs) + φ(hs) < w′(ujs) + φ(ht) ≤ w′(ujt) + φ(ht) = w(ujt)

and, therefore, the weights of any two different heavy vertices ujs and ujt are
always different.

Moreover, we can argue that the weight of any heavy vertex uj with inci-
dent heavy edges is w(uj) ≥ m+ k1 + 1. We consider the two possibilities for
a heavy vertex uj according to its definition:

1. w~P (uj) < m and uj has at least two incident heavy edges. In this case,
w~P (uj) ≥ k2 + 1 and the sum of the weights from its incident heavy
edges must be at least 2k1 + 3, the sum of the two smallest labels in L2.
Then, w(uj) ≥ (k2 + k1) + k1 + 4 = m+ k1 + 4.

2. w~P (uj) ≥ m and uj has at least one incident heavy edge. In this case,
the sum of the weights from its incident heavy edges is at least k1 + 1,
the value of the smallest label in L2. Then, w(uj) ≥ m+ k1 + 1.

Therefore, in any case we have that w(uj) ≥ m + k1 + 1, which is larger
than the weight of any other vertex in the previous classes.

As an example of Theorem 1, consider the caterpillar depicted in Figure 2.
In the notation of the theorem, it has m = 16 edges and r = 10 leaves.
Since a longest path has 8 edges, which is even, we define P as (u0, . . . , u8)
without shrinking the longest path by one. In step 1 we set the values k1 = 4,
and k2 = 12 and divide the label set [1, 16] into L1 = [1, 4], L2 = [5, 12],
and L3 = [13, 16]. Then, P is labeled alternating the labels from L1 and
L3, as indicated in step 2. Now, step 3 identifies vertex u6 as light because
s(u6) = 15 < m (its incident path edges are then oriented in the same direction
in step 4), while the rest of path vertices which are not endpoints are defined
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u0 u8u1 u2 u3 u4 u5 u7u6

7 9 11 5 6 12 10 8

4 16 3 15 2 14 1 13
-4 47 -19 18 -28 16 -1 -32 13

-7 -9 -11 5 6 -12 10 8

Figure 2: Antimagic orientation of a caterpillar. The only light vertex is u6,
colored in light grey; heavy vertices are colored in dark grey.

as heavy vertices (and their incident path edges oriented in contrary directions
in step 4). In step 5, heavy edges are oriented in the direction that maximizes
the weight of their respective heavy vertices, while the only light edge (incident
with u6) is oriented in such a way that the weight of u6 be minimized. This
is now done in step 6, where label 12, the largest one in L2, is assigned to the
light edge incident with u6. Step 7 starts assigning random labels from L2

to four heavy edges, labels 7, 9, 5, and 10 in the example, leaving one heavy
edge unlabeled for each of the vertices u1, u4, and u7. The way to assign
the remaining labels to the still unlabeled heavy edges is the following. First,
calculate the list of partial weights of the heavy vertices having incident heavy
edges by nondecreasing weight: w′(u4) = 22, w′(u7) = 24, and w′(u1) = 36.
Then, assign the remaining labels by increasing value (6, 8, and 11) to the
unlabeled heavy edge incident with each vertex in the list. The final weights
are strictly increasing in the same ordering and, therefore, pairwise distinct.
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